New approach to a constant beamwidth transducer
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The theory of a broadband constant beamwidth transducer which is to be used primarily as a projector is
presented. The transducer is a spherical cap of arbitrary half angle a shaded so that the normal velocity is
equal to U,P (cos §), where P, is the Legendre function whose root of smallest angle occurs at § =a.
The required value for v, the order of the Legendre function (which is not, in general, an integer) can be
obtained to within 1% for a <1 radian from the approximation v~-0.5[(4.81/a)—1). The transducer is
shown to have uniform acoustic loading, extremely low sidelobes, and an essentially constant beam
pattern for all frequencies above a certain cutoff frequency. Under piezoelectric drive the transducer is
shown to have a flat transmitting current response over a broad band.

PACS numbers: 43.88.Ar, 43.20.Rz, 43.30.Jx, 43.30.Y]j

INTRODUCTION

Most directional acoustic transducers and arrays ex-
hibit beam patterns which are frequency dependent.
(For example, the beamwidth of a plane piston or line
array decreases with increasing frequency.) As a re-
sult, the spectral content of the transmitted (or re-
ceived) signal will vary with position in the beam, and
thus the fidelity of an underwater acoustic system will
depend on the relative orientation of the transmitter and
receiver. It would, therefore, be desirable to have a
broadband directional transducer whose beam pattern
is essentially independent of frequency over its band-
width. With such a “constant beamwidth transducer”
(CBT) the spectral content of the acoustic signal would
be independent of bearing. A number of authors'~® have
proposed (and built) more or less successful CBTs, but
these involved the use of arrays of elements which were
either interconnected by elaborate filters, '~ compen-
sating networks, ® or delay lines*® or deployed in a com-
plicated three-dimensional pattern,® and are thus more
suitable as receivers than projectors. Moreover, all
of these papers concerned devices which exhibited “con-
stant” beamwidths over a limited bandwidth. The pres-
ent paper presents a simple method for obtaining a CBT
that is primarily to be used as a projector and accord-
ingly will have a flat transmitting current response over
a broad (but limited) bandwidth. The constant beam-
width characteristics of this transducer, however, ex-
tend over a bandwidth which is, in theory, virtually un-
limited.

There are many possible applications for such a pro-
jector.

(1) Broadband echo ranging. Considerably more in-
formation about a target can be ascertained if broadband
signals are employed. From the shape of the returned
pulse one can infer the size, shape, and construction of
the target. A relatively narrow beam is desirable in
order to obtain the target bearing, avoid reverberation,
and exclude extraneous targets. A CBT is required
since the target will not always be located directly in
the center of the beam.

(2) High-data-vate communication. High-data-rate
underwater communication requires a broad bandwidth
carrier. If for reasons of security or power limitation
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a directional sound beam is used, a constant beamwidth
transducer is necessary to avoid loss of information due
to misalignment of the transmitter and receiver. Good
alignment may be difficult to achieve if the information
is to be exchanged between two platforms, one or both
of which may be in motion.

(3) Broadband ultrasonic transducers for nondestruc-
tive testing, medical diagnosis, and materials research.
The fidelity of the transmitted and received signals af-
fects the accuracy of derived parameters from flaws,
tissue, and materials. The constant beam character-
istics hold for the nearfield as well as for the farfield,
thus making the application to highly directive ultrasonic
transducers possible.

. THEORY

It is well known'™® that if the radial velocity on the
surface of a rigid sphere of radius a is equal to Ugu(6)
xed“ where w is the angular frequency, then the cor-
responding acoustic pressure will be

PR, 6,t)=ipcU, e““"z A,P,(cosb) —'L—h, (kR) , 1)
n=Q hn(ka)

where R and ¢ are spherical coordinates, , is a spher-
ical Hankel function, A, is its derivative, p is the den-
sity and c the sound speed of the surrounding fluid, and
k=w/c is the wave number. The quantity U, is the peak
velocity, and «(6) is the dimensionless velocity distribu-
tion. The quantities A, are the coefficients in the ex-
pansion of u#(6) in the following series of Legendre poly-
nomials P,(cosé),

w(8)= 2 A,P,(cos8) , (2)
n=0
and are defined by
A, =(n+ %)f u(9) P,(cos6) sind dé . (3)
o

The farfield pressure, defined as the limit of p(R, 6, #)
when R - «, is written as

PR, 6,8) = (pcUpae'* R4 /R) g™ “t g(6) , (4)

where the angular dependence (beam pattern) g{(6) is
given by
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e!® <~ A P (cosé)

Ha s Thed (5)
If the velocity distribution is a single complete Legendre
polynomial, i.e., if u(6)=P(cosd), 1=0,1, 2,..., for
all 8, then the beam pattern is equal to P(cosé) at all
frequencies. This beam pattern is, in fact, just the
multipole beam pattern for a 2’-pole which is, of course,
frequency independent. However, a multipole pattern
may not be desirable, because of very large sidelobes.

g(8) =

If the velocity distribution is other than a Legendre
polynomial, the beam pattern is frequency dependent.
Morse and Ingard’ consider this case and conclude that
the beam pattern approaches u(6) in the limit as ka ap-
proaches infinity. Their analysis begins with the as-
sumption that all coefficients A4,, n> N, are negligible
in the series for u () given in Eq. (2). Then only terms
for n =N need be included in the series for the beam
pattern given in Eq. (5). When the frequency is high
enough so that the Hankel functions k,(ka), n<N, are
approximately equal to their asymptotic form, they ob-
tain

g(8) =2 A, P,(cosh) ,
n=0

&(6) = u(9) ,

so that the beam pattern is approximately equal to the
surface velocity distribution. The rate at which g{6)
approaches u(8) with increasing frequency depends on
u(0). We define £ to be the lowest value of ka for which
Eq. (6) applies and call it the cutoff frequency for the
associated velocity distribution. The lower the order
of the last Hankel function iy (ka) required in Eq. (5),
the smaller the value of ka for which all the included
Hankel functions hj(ka), n=<N, are approximately equal
to their asymptotic forms. Thus the more rapidly the
Legendre coefficients A, decrease to a negligible value,
the lower the cutoff frequency for the corresponding ve-
locity distribution. Each velocity distribution has its
own unique set of expansion coefficients and its own cut-
off frequency.

(6)

We are interested in velocity distributions u{6) that
are equal to zero for all angles greater than a given val-
ue 8,. The corresponding farfield radiation will be re-
stricted to the angular cone 6= 8, for 2a=£. Let f(6)
be the analytic function which equals «(8) for 0= 8<8,.
We wish to determine the function f{0) which minimizes
£ for a given value of 8,. Therefore, we seek the func-
tion f(8) whose Legendre coefficients |A,| decrease
most rapidly. For this case A, is given by Eq. (3) with
1(9) replaced by £(9) and the upper timit replaced by 6,.
We can obtain a relationship between 6, and f(6) by ex-
amining the extrema of each A2 with respect to 6.
Setting the first derivative 3A2/36, equal to zero yields
the requirement that

A6) Polcosfp)A, =0 . )

Since P,(cos6,) and A, are normally not zero, satisfac-
tion of Eq. (7) for all n requires that f{6y) =0. There-
fore, we must truncate the velocity distribution at one
of the roots of f(6). We choose the smallest root in or-

J. Acoust. Soc. Am., Vol. 64, No. 1, July 1978

der to avoid introducing sidelobes in the beam pattern.

Additional information about f{6) can be obtained by
examining the second derivative 8?A%/a6%, to determine
whether the extrema for A2 associated with f(6y) =0 are
minima or maxima. The second derivative is given by

aaAz
—a—e%' = (2n+1) f'(6,)P,(cosBy) A, sinby . (8)

The smallest root of P,{cosd) decreases monotonically
with increasing n. We can, therefore, define an»' such
that for all n<n' the smallest root of P,(cos8) will be
greater than 6, Thus, for n<n’, P,{(cosé) is positive
for 6= 6, and from Eq. (3) A, must also be positive.
Since both P,(cosé,) and A, are positive and f'{8) is neg-
ative in our case, the second derivative must be negativ
for n<n’. For n>n’ the second derivative may be eithex
positive or negative. The second derivative will be pos-
itive when the following inequality holds:

P,(cosfy) f’ ’ f(8)P,(cos8)sindd6<0, n>n'. (9)
0

A solution to inequality (9) is f(8) = P (cos8), where the
Legendre function order v is the smallest positive
number for which P,(cosé,) =0. We note that v will not,
in general, be an integer. The lower bound n’ is the in-
teger truncation of v. For this choice of f(6) the coef-
ficients A, are given by

A,=={(1-cos?8p)/(n-v) (n+v+1)]

X P, (cos8y) P,(cosby) , n#v, (10)
and the second derivative is given by
gg _(1-cos®sy)
=@n+1) C e ATy n-v)(n+v+1)
x[ P (cosbg) Pi(cos8P, n#v, (11)

where the prime on Pj(cos6,) denotes differentiation
with respect to cosé,. For the special case where v is
an integer, the expression for the coefficient A,, n=v,
can be obtained from the limit of the right hand side of
Eq. (10) as v approaches n.

We see from Eq. (11) that the second derivative is
always negative for n<v and always positive for n>v.
Therefore, the Legendre function P,(cos@) truncated at
its first zero 6, maximizes A? as a function of 6, for
n<v whjle simultaneously minimizing A? as a function
of 6, for n>v. The effect is to concentrate the energy
of #(8) in the lower-order terms of its Legendre series
expansion, thereby allowing for rapid decrease in the
magnitude of the higher-order terms and minimization
of the cutoff frequency.

Thus, if we have the surface velocity distribution
u(8) =P,(cos) ,
u(0)=0, 0=86,,

we will obtain to a good approximation the farfield beam
pattern

g{(6) =P, (cosd) ,
g(8)~0, o=¢,,

9=86,
(12)

0=<6
° (13)
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P5CBT
ag=25.02°

FIG. 1. Geometry of P; CBT (left), P, 5 CBT (center), and
Py, CBT (right).

@y =13.12°

for ka=£, where the minimized cutoff frequency £ de-
pends on the order v. The Legendre function P,(cos6),
v>0, is equal to one at § =0 and has its first root at the
angle §y=a,. The value for «, decreases monotonically
with increasing v, i.e., the higher the value of v the
narrower the beam. A good approximation for P, (cos6),
0=90=a,, is given by the first term of the Bessel func-
tion series expansion of P, derived by Szegd'®:

P,(cos8) ~(6/sin8) /2 sl (v +0.5)0] . (14)

Using the known first root of Jj together with a correc-
tion term necessary for small values of v, we obtain
the approximation

o 2.405[,  0.045 ]

11+0.5L1-(u+0.5)z (13)

This approximation improves with increasing v, being
correct to within 0.1% for v=1,. Inverting Eq. (15) we
obtain an approximation for the order v in terms of a,:

v=0.5[(4.81/a X1 ~0.008103) -1] . (16)
This approximation improves with decreasing o, and is
correct to within 0.1% for o, =#/2. The simpler ap-
proximation v=~0.5[(4.81/¢,) ~ 1] is accurate to within
1% for o, =<1 radian.

We define £ as the lowest value of ka for which the
derivative of the largest order Hankel function hj (ka)
retained in the series Eq. (5) is approximately equal to
its asymptotic form. Examination shows that this re-
quires that [1+0.5N(N +1)}/ka be small compared to
unity. The pressure on the surface of the sphere is giv-
en by Eq. (1) with R set equal to a. The angular de-
pendence of the surface pressure g,(6) will be approxi-
mately equal to the velocity distribution u(6) if hy (2a)/
ki (ka) is approximately equal to its asymptotic form.
This requires that {1 —[1 = 0.5N(N +1)]/ka}/ka be small
compared to unity, a condition less restrictive than for
the farfield pressure. Examination of the correspond-
ing ratio hy{%kR)/h)(ka) for intermediate distances R
shows that the condition required for this ratio to be ap-
proximately equal to its asymptotic form becomes pro-
gressively less restrictive as R approaches a. Thus
we find that both the surface and nearfield pressure dis-
tributions approach the surface velocity distribution
more rapidly with increasing ka than does the farfield
beam pattern. Consequently for ka= £ the angular de-
pendence of the pressure gg(6) at any distance R=g¢ is
given to a good approximation by
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g=0a,

2r(8) =P (cosb) ,
gn(a) =0,

One significant consequence of this result is that the
specific acoustic radiation impedance everywhere on the
active part of the sphere is essentially equal to pc. A
second significant consequence is obtained in the case
where the sphere is a rigid spherical shell whose in-
side normal surface velocity is equal to zero. Then,
since both the surface pressure and velocity are nearly
zero over the inactive part of the outside surface of the
sphere, the part of the spherical shell for 6= a, can be
removed without significantly changing the acoustic
fields, i.e., the constant beamwidth behavior would
still exist. Thus we need retain only the active spher-
ical cap of cone angle a,. The radius of this cap (the
primary dimension of the transducer) is given by

(17)

6z a, .

b=aa,. (18)

It is appropriate to redefine the cutoff frequency in
terms of kb instead of ka. Thus we replace the condi-
tion Za= £ with the equivalent condition 26 =, and in
the remainder of the paper refer to Q, as the cutoff
frequency. The relative sizes of a, 5, and the curva-
ture of the transducer for v=5, 7.5, and 10 are shown
in Fig. 1. The appropriate velocity distributions for
these three cases as given by Eq. (12) are shown in
Fig. 2.

It is difficult to obtain analytically an exact expres-
sion for the cutoff frequency {2,. One approach to de-
termining 2, stems from the intuitive requirement that
the spherical cap must be large enough to support a
sound beam of the required width. The first null for the
P, beam pattern occurs at . The first null for a plane
piston of radius a, occurs at'!

0=sin™ (3.831/ka,) ~3.83/ka, . (19)

The equivalent plane piston required to produce a null
at a, would thus have a radius given by

a,=3.83/ka, ~[(2v+1)/r}(3.83/4.81) ; (20)
10 T T T T
o+ Ps —
8 Pz =
I
T —
=
8 6 =
2
>
w Sk —
Z
2 Al _
@
3 -
2 -
} - 3
1 i 1 !
o} 5 10° 15° 20° 25°

ANGLE
FI1G, 2. Velocity shading functions {from Eq. (12}] for v=5,
7.5, and 10.
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hence we require
Bb=(8v+4)/5 . (21)

This condition, however, turns out to be a little weak
for small v because the shading reduces the effective
size of the piston and because the curvature is relative-
ly large for small v. A general rule of thumb, however,
can be obtained by adding an empirically determined
constant to Eq. (21):

kb= 8, = (8v +27)/5. (22)

We enumerate the expected properties of the P, CBT for
kb= Q,:

(1) Essentially constant beam pattern.
(2) Very low sidelobes.

(3) The surface pressure distribution as well as the
pressure distribution at all distances out to the far-
field is approximately equal to the surface velocity dis-
tribution. Thus, in a sense, there is no nearfield.

(4) since both the surface velocity and surface pres-
sure have the same dependence on 8, the local specific
acoustic radiation impedance is independent of 6 (and
equal to pc). Thus the entire transducer is uniformly
loaded. This is particularly important if the transducer
is to be made in the form of a mosaic of small trans-
ducers operated near resonance.

(5) Many directional piezoelectric transducers are
essentially constant velocity devices over a wide fre-
quency range below resonance. Over this range they
exhibit a 6 dB/octave rise in transmitting current re-
sponse directly attributable to the increasing directivity
index (DI). This results in a flat voltage receiving sen-
sitivity when used as a hydrophone. A CBT of similar
construction, which would have a constant DI in addition
to a constant radiation impedance, would thus have a
broad band below resonance over which its transmitting
current response would be flat.

1. NUMERICAL TEST

We tested our hypothesis by numerically caleulating
the acoustic pressure produced by a spherical radiator.
We used the series expansions given in Egs. (1) and
(5). Depending on the particular case, up to 200 terms
were retained in the series. (We note that we are ac-
tually analyzing a shaded spherical cap in a rigid spher-
ical baffle. However, arguments given earlier in Sec.

I show that the presence or absence of the baffle should
not significantly affect the acoustic fields for kb= Q,.)
The coefficients A, were normally evaluated by use of
Eq. (10). For the special case where v is an integer
the single coefficient A,, n=v, was evaluated by ex-
pressing Pﬂ(x) as apolynomial in x and integratingterm
byterm. A good approximation for this coefficient can be
obtained by using for P_(cos8) the approximation given
in Eq. (14), integrating exactly the resulting expres-
sion, and adding an empirically determined correction
necessary for low v:

A,~[1.5586/(2v +1)][1~0.345/(2v+ 1)7] . (23)
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This approximation improves with increasing v, being
accurate to within 0.1% for v=1. It can be shown that
the DI for a P, CBT is given in terms of A, as follows:

DI=-10log[A,/(2v+1)] . (24)

Here A, is defined by Eq. (23) with v allowed to be non-
integer.

All of the Legendre polynomials and Hankel functions
required in the numerical calculations were obtained by
use of standard recursion relations. We replace
P/(cosa,) required for the calculation of A, with the
equivalent expression [vP, , (cosa,)/(1 - cos?w,)] and
evaluated P,.;(cosa,) using its hypergeometric series in
i(1 -cosa,).

The computer analyses have been carried out for the
cases of P5, P, 5, and Pyg. The geometries are shown
in Fig, 1. The input shading functions are shown in
Fig. 2. For a P; CBT the spherical cap has the cone
angle a;=25.02°; for a P, ; CBT, aq5=17.22°; and for
a P, CBT, a4=13.12°, From Fig. 2 we see that the
shading function is almost linear with angle toward the
edge of the cap.

The results for the P; CBT are summarized in Figs.
3 through 5. In the bottom half of Fig. 3 we see the
- 6- and - 3-dB half beamwidths for the P; CBT plot-
ted as a function of 2b. For kb= Q5 the total variation
in the - 3- or - 6-dB beamwidth is less than about + 2"
and less than about + 1° for kb=20,. The piezoelectric
(constant velocity) transmitting current response for a
Pg CBT is shown on the top half of Fig. 3 and on Fig.
4. Above kb =8 it is flat to within about +1 dB. Well
below kb =8 the response rises 6 dB/octave. The cor-
responding curve for a plane circular piston would con-
tinue to rise 6 dB/octave for all values of kb, while the
corresponding curve for a 25° unshaded spherical cap
would have maxima 6 dB above the 0-dB level and near
nulls for minima. (See Fig. 4.)

We note that the constant veloeity transmitting cur-
rent response for the unshaded spherical cap does not

+2 T
0 —
..2 -
~4r- RELATIVE TRANSMITTING CURRENT RESPONSE 7
a -6 (CONSTANT VELOCITY) .
..e - =
-0+ B
-2 h
-4 bl
-64B
40° -
i /HALF BEAMWIDTH ]
W 30° =
3 | 95 204 -3dB HALF BEAMWIOTH —
< 200 l 7]
'00 -
1 i i | X 1 1 1 i ! i 1 !
o ) 20 30 40 50 60 70 80

Kb

FIG. 3. Relative constant velocity transmitting current re~
sponse (top) and — 3-and — 6-dB half beamwidth (bottom) for
Pj; CBT as a function of kb.
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T T T T T T T T Y T T T T 7
2+ - _
_~""—PLANE PISTON .
8 e -
L 25° SPHERICAL -~ e

,/ \ Vad — ~~ -~ -~
/ 4 \ cAP V4 N / R

RELATIVE TRANSMITTING CURRENT RESPONSE AT
CONSTANT VELOCITY {dB)

] [} 20 30 40 50 60 70 80
Kb

FIG. 4. Comparison of constant velocity transmitting current
response of P; CBT with circular plane piston and 25° spherical
cap.

approach a constant value in the limit of large frequen-
cy. The alternate maxima and minima shown in Fig. 4
repeat indefinitely as kb approaches infinity. The posi-
tion of the extrema can be determined very accurately
by requiring that the height of the cap a(l — cos 25°) be
equal to an integral number of half wavelengths m/2.
0Odd values of m correspond to minima, and even val-
ues correspond to maxima.

The corresponding beam patterns show an interfer-
ence peak or valley centered around 0°. As the fre-
quency increases to large values, the pressure around
0° alternately rises and falls relative to the rest of the
pattern. The angular width of the peak or valley de-
creases with increasing frequency. The pressure out-
side the paraxial region behaves normally; it approaches
a stable value and its distribution approaches the veloc-
ity distribution. Thus it appears that the uniformly
shaded cap is an exception to the rule that the beam pat-
tern always approaches the veloeity distribution as the
frequency increases indefinitely. The width of the ex-
ceptional region does decrease toward zero but the re-
gion always includes the important §=0° value. The

\
320° \{’5 CBT
ZZZAKb 2 05
M Kb2 204

310

300°

250

FIG. 5. Range of beam patterns for P; CBT for kb = (hatched

area) and kb = 20 (cross~hatched area).
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330 340° 350° 0 ©° 200 I°
\ A

25° SPHERICAL CAP o

30 g sKbs 20
0 1048 50°
300° PISTON IN RIGID) 18"

BAFFLE Kb2 Qg

290° 100
280° 80°
270° 90°
260° 100°
250 Ino®

FIG. 6. Range of beam patterns for plane circular piston for
kb =0 (right) and 25° spherical cap for Q5 =kb = 2(l;5.

initial assumption of Morse and Ingard” leading to Eq.
(6) does not apply to the uniformly shaded cap since

the corresponding Legendre coefficients |A,| decrease
so slowly with increasing n that for g ~0° the series of
Eq. (5) does not converge until » becomes larger than
ka and ki (ka) increases rapidly to force convergence.
The extent of the deviation from a constant beam pat-
tern is illustrated in Fig. 5. For all frequencies such
that kb= Q;=13.4 all beam patterns will fall within the
hatched area shown in Fig. 5. For kb= 20 all beam
patterns fall within the much more restricted region in-
dicated by the crosshatched area in Fig. 5. We note
that within the 40-dB dynamic range used in Fig. 5no
secondary lobes appear in either the extrema shown
here or in any of the single-frequency beam patterns
used to obtain the extrema. Use of a larger dynamic
range would show that the only noticeable secondary
lobe is a backlobe due to the “hot spot” at 6=180°. The
level of this backlobe decreases with increasing fre-~
quency, having a value of — 48 dB at kb =13; and -60dB
at kb =29;. For comparison the right hand side of Fig.
8 shows the extent of variation of the beam patterns for
a plane circular piston for kb = 5 while the left hand
side shows the extent of variation of the beam patterns
for a 25° spherical cap in the bounded region $3; < kb

5 295.

Figure 7 shows the extent of deviation from constant
beam pattern for the P, ; CBT for kb= Qq =17.4
(hatched area) and kb= 22, s (cross-hatched area).

Note that the beam patterns are all narrower than they
were for the P; CBT though, of course, it must be re-
membered that £, ;>92;. The most pronounced second-
ary lobe, although unnoticeable in Fig. 7, is the back-
lobe with a level of —60 dB at kb =8, 5 and —69 dB at
kb =29, ;. Similarly, Fig. 8 shows the extent of devia-
tion from constant beamwidth for a Py, CBT. All beam
patterns for kb= §2,;,=21, 4 fall within the hatched area
in Fig. 8 and all beam patterns for kb= 2§, fall within
the cross-hatched area. Again the sidelobes are virtual-
1y nonexistent. The backlobe is down 70 dB at 2b =82,
and 88 dB at kb =22,, Figures 3, 5, 7, and 8 indicate
that if Legendre shading can indeed be achieved on a



3300 340° 350° O I0°  20°  30°
f N\

320° \PT.S CBT 40°

Kb 2 9-1_5

BERKb 2 2075
30° 500

Q75717 1048

300° &r
290° 70
280° 80°
270° %0
260° 100°
250 foe

FIG. 7. Range of beam paiterns for P; 5 CBT for kb =5
(hatched area) and kb = 2R 5 {(cross-hatched area).

spherical cap the transducer will exhibit CBT charac-
teristics. Small errors (up to + 5%) have been intro-
duced into the shading without appreciably disturbing
these CBT characteristics. It is, however, essential
for the normal velocity to be very nearly zero at a, to
avoid large deviations from constant beamwidth due to
the superposition of the erratic patterns of an unshaded
spherical cap and the CBT patterns. We calculated the
pressure on the surface of the sphere for all three cases
considered above and confirmed that the surface pres-
sure distribution more closely matches the velocity dis-
tribution than does the beam pattern. As an example
we show in Fig. 9 the comparison of the surface pres-
sure distribution, beam pattern, and velocity distribu-
tion for a P; CBT at kb =Q;. The surface pressure dis-
tribution is normalized by pcU,.

The constant beamwidth results described above for
a rigid spherical cap can be shown to apply equally well
to an acoustically transparent spherical shell. However,
the acoustic radiation from a transparent spherical cap
is bidirectional. A constant beamwidth pressure distri-

330° 340° 3%0° O 0° 20° 30°
A\
320N Pyo CBT a
ZAKD 2 8,4
ai0o, EKD 2 20,9 sor
300° 60°
290° 70*
280° 80°
2n* 90°
260° 00
250° HO®

FIG. 8. Range of beam patterns for Pyq CBT for kb =8,
(hatched area) and kb = 2Q,, (cross-hatched area).
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FIG. 9. Comparison of the surface pressure distribution, far-
field beam pattern, and velocity distribution for P; CBT for
kb =Q.

bution matching the velocity distribution on the cap is
produced in both the forward (8 =0°) and the backward
(6 =180°) directions. Trott'? applied the results pre-
sented in an earlier unpublished version of the present
paper to the theoretical design of a receiver CBT using
P,(cosf) =cos6 shading on an acoustically transparent
hemispherical cap.

i1l. CONCLUSIONS

We have shown, in theory, that a satisfactory CBT
projector can be constructed from a piezoelectric
spherical cap of arbitrary half anglea, whose normal
velocity is shaded in the form of the Legendre function
P,(cos8) whose root of smallest angle occurs at 0=a,.
For kb=, the transducer will exhibit uniform loading,
extremely low sidelobes, and a beam pattern which is
essentially independent of both frequency and distance
from the source.
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